Michael J. answered 12/15/15
Tutor
5
(5)
Effective High School STEM Tutor & CUNY Math Peer Leader
Another method is to use the trigonometric identities.
Part B)
We can break up the angle as a sum or difference of angles that we can easily find sine and cosine of. Then apply the addition/subtraction angle identity for cosine.
cos(270 - 30) =
cos(270)cos(30) + sin(270)sin(30) =
0 * √(3) / 2 + (-1) * 1/2 =
-1/2
Part C)
Use the same method from part B combine with the identity tanθ = sinθ / cosθ.
tan(150) =
tan(180 - 30) =
sin(180 - 30)
_________________ =
cos(180 - 30)
sin(180)cos(30) - cos(180)sin(30)
___________________________________ =
cos(180)cos(30) + sin(180)sin(30)
0 * √(3)/2 - (-1) * (1/2)
_______________________________ =
-1 * √(3)/2 + 0 * (1/2)
(1 / 2) / (-√(3) / 2) =
(1 / 2) * (-2 / √3) =
-1 / √3
Rationalize the denominator.
-√(3) / 3