Michael J. answered 11/11/15
Tutor
5
(5)
Understanding all Sines of Triangles
Apply the addition and subtraction angle identities for the given value of t.
cos(t + pi) = cos(t)cos(pi) - sin(t)sin(pi)
cos(t - pi) = cos(t)cos(pi) + sin(t)sin(pi)
sin(t + pi) = sin(t)cos(pi) + cos(t)sin(pi)
sin(t - pi) = sin(t)cos(pi) - cos(t)sin(pi)
tan(t + pi) = [tan(t) + tan(pi)] / [1 + tan(t)tan(pi)]
tan(t - pi) = [tan(t) + tan(pi)] / [1 + tan(t)tan(pi)]
Since the angle t is between 0 and pi/2, the angle is located in the 1st quadrant.