Michael J. answered 11/03/15
Tutor
5
(5)
Understanding all Sines of Triangles
1 - (sinA + cosA)(sinA + cosA) =
1 - (sin2A + 2sinAcosA + cos2A) =
1 - sin2A - 2sinAcosA - cos2A
Use the trig identities:
sin2A + cos2A = 1
cosA = √(1 - sin2A)
Let's put this entire expression in terms of sinA.
1 - sin2A - 2sinA√(1 - sin2A) - (1 - sin2A) =
1 - sin2A - 2sinA√(1 - sin2A) - 1 + sin2A =
-2sinA * √(1 - sin2A) =
-2sinA * √[(1 + sinA)(1 - sinA)]
Let's put this entire expression in terms of sinA.
1 - sin2A - 2sinA√(1 - sin2A) - (1 - sin2A) =
1 - sin2A - 2sinA√(1 - sin2A) - 1 + sin2A =
-2sinA * √(1 - sin2A) =
-2sinA * √[(1 + sinA)(1 - sinA)]
Michael J.
11/04/15