Joseph F. answered 10/03/15
Joe's Math, Science and Chess
Hi! Let's think of the two functions above and below the central line as P(t) and Q(t). The Quotient Rule has that if P and Q are functions of t, and their derivatives in t are P' and Q', then the derivative of y is: dydt = P'Q - PQ' -------- Q^2 So, here's the differentiation of both functions: P(t) = t^3 + 3t P'(t) = 3t^2 + 3 Q(t) = t^2 - 4t + 3 Q'(t) = 2t - 4 So, the derivative of y is: dydt = [3t^2 + 3][t^2 - 4t + 3] - [t^3 + 3t][2t - 4] --------------------------------------------- [t^2 - 4t + 3]^2 Here's the algebra afterward, so you can check yourself: [3t^2 + 3][t^2 - 4t + 3] = 3t^4 - 12t^3 + 9t^2 + 3t^2 - 12t + 9 ----------------------------- 3t^4 - 12t^3 + 12t^2 - 12t + 9 [t^3 + 3t][2t - 4] = 2t^4 - 4t^3 + 6t^2 - 12t ------------------------ 2t^4 - 4t^3 + 6t^2 - 12t [t^2 - 4t + 3]^2 = t^4 - 4t^3 + 3t^2 - 4t^3 + 16t^2 - 12t 3t^2 - 12t + 9 ---------------------------- t^4 - 8t^3 + 22t^2 - 24t + 9 dydt = 3t^4 - 12t^3 + 12t^2 - 12t + 9 - [2t^4 - 4t^3 + 6t^2 - 12t] ----------------------------------------------------------- t^4 - 8t^3 + 22t^2 - 24t + 9 = t^4 - 8t^3 + 6t^2 + 9 ---------------------------- t^4 - 8t^3 + 22t^2 - 24t + 9