Kirill Z. answered 09/16/13
Tutor
4.8
(230)
Physics, math tutor with great knowledge and teaching skills
You can do it by applying the integration by parts.
∫e3xcos(2x)dx=(½)e3xsin(2x)-(3/2)∫e3xsin(2x)dx=(½)e3xsin(2x)-(¾)e3x(-cos(2x))-(9/4)∫e3xcos(2x)dx
Now let I=∫e3xcos(2x)dx; Then we have an equation:
I=(½)e3xsin(2x)+(¾)e3xcos(2x)-(9/4)I;
Solving for I yields:
I=1/13*[2e3xsin(2x)+3e3xcos(2x)]=e3x/13*[2sin(2x)+3cos(2x)]
James R.
09/16/13