Arthur D. answered 04/27/15
Tutor
4.9
(293)
Mathematics Tutor With a Master's Degree In Mathematics
1-cos(2x)=tan(x)sin(2x)
working with the left side first
1-cos(2x)
1-(cos2(x)-sin2(x))
[1-cos2(x)]+sin2x
sin2(x)+sin2(x)
2sin2(x) is the left side
working with the right side
tan(x)(sin(2x))
(sin[x]/cos[x])(2sin(x)cos(x))
sin(x)(2sin(x)) (the 2 cos(x)'s cancel)
2sin2(x) is the right side also so it has been established
(1+cos(x))(tan(x/2)=sin(x) (I'm using x instead of θ)
(1+cos(x))(√(1-cos[x])/(1+cos[x])=sin(x)
(√(1-cos[x])/(1+cos[x])=sin(x)/(1+cos[x])
square both sides
(1-cos[x])/(1+cos[x])=sin2(x)/(1+cos[x])2
cross multiply
(1-cos[x])(1+cos[x])(1+cos[x])=(1+cos[x])(sin2(x))
divide both sides by (1+cos[x])
(1-cos[x])(1+cos[x])=sin2(x)
1-cos2(x)=sin2(x)
1=sin2(x)+cos2(x) which is a trig identity so identity established