Syeda Faryal A. answered 07/10/24
I'm here my beloved student
To illustrate Stirling's approximation \( g(x) = \sqrt{2 \pi x} \left( \frac{x}{e} \right)^x \) compared to \( f(x) = x! \) over the domain [0, 5], we can plot both functions and observe their behavior.
Let's go through the steps to create this plot in Python using matplotlib:
```python
import math
import numpy as np
import matplotlib.pyplot as plt
# Function definitions
def factorial(x):
return math.factorial(x)
def stirling_approx(x):
return np.sqrt(2 * np.pi * x) * (x / np.e)**x
# Domain
x_values = np.linspace(0, 5, 100)
y_factorial = [factorial(int(x)) for x in x_values] # Calculate factorial for integer values of x
y_stirling = stirling_approx(x_values)
# Plotting
plt.figure(figsize=(10, 6))
plt.plot(x_values, y_factorial, label='x!', marker='o')
plt.plot(x_values, y_stirling, label='Stirling\'s Approximation', linestyle='--')
plt.title('Comparison of x! and Stirling\'s Approximation')
plt.xlabel('x')
plt.ylabel('Value')
plt.legend()
plt.grid(True)
plt.show()
```
### Explanation:
- **Factorial Function (`factorial(x)`)**: This uses Python's `math.factorial` function to calculate \( x! \).
- **Stirling Approximation Function (`stirling_approx(x)`)**: Implements Stirling's approximation formula for factorial.
- **Domain (`x_values`)**: Generates 100 points between 0 and 5 for plotting.
- **Plotting**:
- The `plot` function is used to plot both \( x! \) and Stirling's approximation \( g(x) \) against `x_values`.
- `marker='o'` and `linestyle='--'` are used for visual differentiation between the two lines.
- Axes labels, title, legend, and grid are added for clarity.
### Conclusion:
The plot will demonstrate that Stirling's approximation g(x) closely approximates the factorial function x! over the specified domain [0, 5], thereby supporting the statement that Stirling's formula provides a good approximation for factorial values, especially for large ( x ).