
Kevin S. answered 09/28/23
Discrete Math 20+ years experience : Developing Skill and Confidence
For any real number x, x² ≥ 0.
So in this case, (a - b)² is the square of the real number a - b.
Therefore, (a - b)² ≥ 0.
Since (a - b)² ≥ 0,
a² - 2ab + b² ≥ 0 ⇔ a² + b² ≥ 2ab ⇔ (a² + b²) / ab ≥ 2 ⇔ (a / b) + (b / a) ≥ 2.
Equality occurs if and only if a − b = 0, i.e. a = b.