OK, I think the problem is ((2/x) + 6) / (1/y):
((2/x) + 6) / (1/y)
When you divide by a fraction, it's the same as multiplying by the reciprocal of the fraction. The reciprocal of 1/y is y/1 or just y. So:
(2/x + 6) / (1/y) = (2/x + 6) · y = 2y/x + 6y
which is what you got. If you want to put it over a common denominator, multiply the 6y by x/x and you get:
2y/x + 6y·(x/x) = (2y + 6xy)/x = 2y(1+3x)/x