Mark M. answered 03/11/15
Tutor
4.9
(954)
Retired college math professor. Extensive tutoring experience.
3sec2θ - 5tanθ = 1
3(1 + tan2θ) - 5tanθ - 1 = 0
3tan2θ - 5tanθ + 2 = 0
Let u = tanθ Then 3u2 - 5u + 2 = 0
(3u - 2)(u - 1) = 0
u = 2/3 or u = 1
tanθ = 2/3 or tanθ = 1
If tanθ = 1, then θ = 45° or 225°
If tanθ = 2/3, then θ lies in quadrant 1 or quadrant 3
solution in quadrant 1: θ = tan-1(2/3) = 33.7°
solution in quadrant 3: θ = 33.7° + 180° = 213.7°
Solutions: 45°, 225°, 33.7°, 213.7°