The integrating factor being μ (x) = e∫2dx = e2x
we have
e2x [ dy/dx + 2y] = e2x [x-7]
e2x dy + 2y e2xdx = [x e2x -7 e2x] d x
d [ e2x y] = [x e2x -7 e2x] d x
∫ d [ e2x y] = ∫ [x e2x -7 e2x] d x
e2x y = ∫ x e2x d x - ∫ 7 e2x d x
e2x y = (1/2) ∫ x de2x - ∫ 7 e2x d x =
e2x y = (1/2) x e2x - (1/4) e2x - (7/2)e2x + ξ , where ξ any real number
y = (1/2) x - (1/4) - (7/2) + ξ e-2x
y = (1/2) x - (15/4) + ξ e-2x but y(0)=0 ⇒ 0 = - (15/4) + ξ
y = (1/2) x - 15/4 + (15/4) e-2x