Your differential equation
[-10x + 5y^2e^(x y) - 7sin(y)cos(x)] d x + [5xye^(x y) - 6y + 5e^(x y) - 7sin(x)cox(y)] d y = 0
is an exact one
PROOF FOR EXACTENESS
Let M (x, y) = -10x + 5y^2e^(x y) - 7sin(y)cos(x)
and N( x, y ) = 5xye^(x y) - 6y + 5e^(x y) - 7sin(x)cox(y) Then
∂ M / ∂ y = 10 y ex y + 5xy2exy − 7 cosx cosy
∂ N / ∂ x = 10 y ex y + 5xy2exy − 7 cosx cosy
Since ∂ M / ∂ y = ∂ N / ∂ x the differential equation is an exact one . That means there exist a function
Ψ(x ,y ) = c whose total differential is the given differential equation.
In other words
d Ψ / d x = -10x + 5y^2e^(x y) - 7sin(y)cos(x)
d Ψ = [-10x + 5y^2e^(x y) - 7sin(y)cos(x) ] dx
Ψ = ∫ [-10x + 5y^2e^(x y) - 7sin(y)cos(x) ] dx
Ψ = ∫ [-10x] d x + ∫ [ 5y^2e^(x y) ] dx - ∫ [ 7sin(y)cos(x) ] dx + F(y)
Ψ = - 5 x2 + 5yexy - 7sin(y) sin (x) + F(y)
Now we must find F(y).
But we know that ( ∂/∂y) (- 5 x2 + 5yexy - 7sin(y) sin (x) + F(y) ) = N (x ,y) That is
( ∂/∂y) [- 5 x2 + 5yexy - 7sin(y) sin (x) + F(y) ] = 5xye^(x y) - 6y + 5e^(x y) - 7sin(x)cox(y)
5xye^(x y) + 5e^(x y)- 7sin(x)cox(y) + F' (y ) = 5xye^(x y) - 6y + 5e^(x y) - 7sin(x)cox(y)
Or equivalently F' (y ) = - 6y Then F( y) = -3y2
Finally
Ψ(x,y) = - 5 x2 + 5yexy - 7sin(y) sin (x) + F(y)
Ψ(x,y) = - 5 x2 + 5yexy - 7sin(y) sin (x) - 3y2