Let us put the given differential equation in the form M(x ,y) d x + N (x, y ) d y = 0
(-24x^2 + 18xy - 7y^2 + 4y + 4) d x + (9x^2 -18xy - 2x - 5y^2 +1) d y = 0
M(x ,y) = -24x^2 + 18xy - 7y^2 + 4y + 4
N (x, y ) = 9x^2 -18xy - 2x - 5y^2 +1
Then ∂ M /∂y = 18x -14 y + 4
and ∂ N /∂x = 18 x - 18 y - 2
Now notice that ∂ M /∂y ≠ ∂ N /∂x. Hence the given differential equation is not an exact one.