Raymond B. answered 07/19/21
Math, microeconomics or criminal justice
a1=7
a2=-21
a3 =63
a4 =-189
an=a1(r^n-1)
an=7(-3)^(n-1)
a15 = 7(-3)^(15-1)
=7(-3)^(14) =33,480,783 = the 15th term
sum of the geometric sequence = Sn = a1(1-r^n)/(1-r) with n=15, r=-3 a1 = 7
S1 = 7
S2 = -14 7(1-9)/(1--3) = 7(-8)/4=-14
S3 = 49 7(1+27)/4 = 7(7) = 49
S4 = -140 7(1-81)/4 = 7(-80)/4 =-7(20) = -140
Sn = a1[(1-r)^(n-1)]/(1-r)
S15 = 7(1-(-3)^15/(1--3) = 25,110,589 = sum of first 15 terms