𝒇(𝒙)=𝒙+𝟒 and 𝒈(𝒙)=𝒙𝟐+𝟐𝒙+𝟏
1) [f∘g](x) = f(g(x)) =f(𝒙𝟐+𝟐𝒙+𝟏) = 𝒙𝟐+𝟐𝒙+𝟏 + 4 = 𝒙𝟐+𝟐𝒙+ 5.
2) [g∘f](x) = g(f(x)) = g(x+4) = (𝒙+𝟒)2 + 2(𝒙+𝟒) +1 = x2 + 8x +16 +2x +8 = x2 +10x + 24.
3) [f∘g](6) = 62 + 2(6) +5 = 53.
4) [g∘f](−3) = (-3)2 + 10(-3) + 24 = 3.
5) [g∘f](0) = g(f(0)) = g(-2) = 1.
6) [h∘g](−2) = h(g(-2)) = h(1) = -2.
Ashley L.
THANK YOU!! I appreciate this so much ((:03/22/21