Raymond B. answered 07/30/25
Math, microeconomics or criminal justice
= ln125 + lne^2 + ln((x^2y)^3)
= ln5^3 + 2lne + 3ln(x^2y)
= 3ln5 +2(1) + 3(lnx^2) +3lny
= 3ln5 +2 +6lnx +3lny
Mona H.
asked 03/01/21show step by step work:
ln(125e2(x2y)3)
Raymond B. answered 07/30/25
Math, microeconomics or criminal justice
= ln125 + lne^2 + ln((x^2y)^3)
= ln5^3 + 2lne + 3ln(x^2y)
= 3ln5 +2(1) + 3(lnx^2) +3lny
= 3ln5 +2 +6lnx +3lny
Bradford T. answered 03/01/21
Retired Engineer / Upper level math instructor
ln(125e2(x2y)3)=ln(125) + ln(e2) + ln(x6)+ln(y3)
= ln(53) + 2(1) + 6ln(x)+ 3ln(y)
= 3ln(5)+2 + 6ln(x) + 3ln(y)
RAFAH A. answered 03/01/21
Former College Instructor, Calculus and Algebra Tutor
ln(125e2(x2y)3) = ln 125 + ln e2 + ln (x2 y )3
= ln 53 + 2 ln e + 3 ln (x2 y )
= 3 ln 5 + 2 *1 + 3( ln x2 + ln y)
= 3 ln5 +2 + 3 ln x2 + 3 ln y
= 3 ln 5 + 2 + 3*2 ln x + 3 ln y
= 3 ln 5 +2 +6 ln x +3 ln y
Philip P. answered 03/01/21
Affordable, Experienced, and Patient Algebra Tutor
ln(125e2(x2y)3)
First, simplify the exponents:
ln(53·e2·x6·y3)
Now apply the log property log(a·b) = log(a) + log(b)
ln(53·e2·x6·y3) = ln(53) + ln(e2) + ln(x6) + ln(y3)
Now apply the log property log(ab) = b·log(a)
ln(53) + ln(e2) + ln(x6) + ln(y3) = 3·ln(5) + 2·ln(e) + 6·ln(x) + 3·ln(y)
Finally, note that ln(e) = 1:
3·ln(5) + 2 + 6·ln(x) + 3·ln(y)
Get a free answer to a quick problem.
Most questions answered within 4 hours.
Choose an expert and meet online. No packages or subscriptions, pay only for the time you need.