
Patrick B. answered 01/07/21
Math and computer tutor/teacher
6(k+1)^4 - (k+3)^4
6(k^2+2k+1)(k^2+2k+1) - (k^2+6k+9)(k^2+6k+9) =
6( k^4 + 2k^3 + k^2
2k^3 + 4k^2 + 2k
k^2 + 2k + 1)
6 ( k^4 + 4k^3 + 6k^2 + 4k + 1) - (k^4 + 6k^3 + 9k^2
6k^3 + 36k^2 + 54k
9k^2 + 54k + 54)
6( k^4 + 4k^3 + 6k^2 + 4k + 1) - (k^4 + 12k^3 + 54k^2 + 108x + 54)
6k^4 + 24k^3 + 36k^2 + 24k + 6 - k^4 - 12k^3 - 54k^2 - 108k - 54
5k^4 +12k^3 -18k^2-84k - 48
this polynomial function has at most 1 positive solution since
there is only one sign change, per DeCartes rule of signs...
the graph crosses the x-axis at x=2.465, and stays positive
forever more...
so 6(k+1)^4 - (k+3)^4 > 0 for x>=4
therefore 6(l+1)^4 > (k+3)^4