1) A --> (A --> B) by contrapositive
A --> (~A or B) by implication identity
~A or (~A or B) by implication identity
~A or ~A or (~A or B) by distributive
(~A or ~A or ~A) or B by associative
~A or B
A -->B by implication identity
===================================================================
2) Given ~C,
~C = ~C or ~D must hold
= ~(C and D) must hold
This implies ~(C and D) or E must hold
(C and D) -> E
=====================================================
3) If F then F or (H and G)
then F or (H and G) => G
===================================================
4) if K, then ~I or K ---> I-->K
if ~J, then ~I ---> ~I or K ---> I --> K