
Aneesh C. answered 01/16/21
Knowledgeable Tutor in Biostatistics
Hi Carlie,
In order to solve this problem, we need to realize a few things:
- N(1100, 200) translates to µ = 1100 and σ = 200
- the 95th percentile translates to a probability (i.e. area under the curve) of 0.95
- the 97.5th percentile translates to a probability (i.e. area under the curve) of 0.975
a) an area under the curve of 0.95 translates to a Z-score of 1.645
1.645 = ((x-bar) - 1100) / (200) --> x-bar = 1429
The 95th percentile for SAT scores would be 1429.
b) an area under the curve of 0.975 translates to a Z-score of 1.96
1.96 = ((x-bar) - 1100) / (200) --> x-bar = 1492
The 97.5th percentile for SAT scores would be 1492.