
Yefim S. answered 07/25/20
Math Tutor with Experience
∫01sinx/xdx = ∫01(x - x3/3! + x5/5! - x7/7! + x9/9! - ...)/x∫dx = ∫01(1 - x2/3! + x4/5! - x6/7! + x8/9! - ...)dx =
(x - x3/(3! ·3) + x5/5!·5) - x7/7!·7) + x9/(9!·9) -....)01 = 1 - 1/(3!·3) + 1/(5!·5) - 1/(7!·7) + 1/(9!·9) - ...
Because we get alternative convergence series: 1) lim n→∞ 1/(n!·n) = 0 and 2) an + 1 = 1/((n+ 1)!·(n+ 1)) <
1/(n!·n) = an.
Because error less then first term what we rejecting. !st such a term is 1/(9!·9) = 0.31·10-6 < 10-6 but
preciding term 1/(7!·7) = 2.83·10-5 > 10-6. Because withn accuracy 10-6 we have:∫
∫01sinx/xdx = 1 - 1/18 + 1/600 - 1/35280 ≈ 0.946083