Hien B. answered 05/20/20
Top Logic Tutor w/ Master's degree from Oxford
∃x(Bx & ∀y((Cy & ~Syy) <-> Sxy)) ∴ ∃x(Bx & ~Cx)
1. ∃x(Bx & ∀y((Cy & ~Syy) <-> Sxy)) premise
2. ~∃x(Bx & ~Cx) Assume for Reductio/Negation Elimination
3. ∀x~(Bx & ~Cx) 2, Quantifier Negation
4. Ba & ∀y((Cy & ~Syy) <-> Say) 1, Existential Elimination/Instantiation
5. Ba 4, Simplification/Conjunction Elimination
6. ∀y((Cy & ~Syy) <-> Say) 4, Simplification/Conjunction Elimination
7. ~(Ba & ~Ca) 3, Universal Elimination/Instantiation
8. ~Ba v ~~Ca 7, DeMorgan's Law
9. ~Ba v Ca 8, Double Negation Elimination
10. ~~Ba 5, Double Negation Introduction
11. Ca 9, 10 DisjunctiveSyllogism/DisjunctionElimination
12. (Ca & ~Saa) <-> Saa 6, Universal Elimination/Instantiation
13. Ca -> (~Saa <-> Saa) 12, Exportation
14. ~Saa <-> Saa 11, 13, Modus Ponens/Conditional Introduction
15. ~(~Saa v Saa) Assume for Reductio/Negation Elimination
16. ~~Saa & ~Saa 15, DeMorgan's Law
17. ~Saa v Saa 15-16, Reduction/Negation Elimination
18. ~Saa -> Saa 14, Biconditional Elimination
19. Saa -> ~Saa 14, Biconditional Elimination
20. ~Saa Assume for Conditional Proof/Introduction
21. Saa 18, 20, Modus Ponens/Conditional Introduction
22. ~Saa & Saa 20, 21, Conjunction Introduction
23. ~Saa -> (~Saa & Saa) 20-22, Conditional Proof/Introduction
24. Saa Assume for Conditional Proof/Introduction
25. ~Saa 19, 24, Modus Ponens/Conditional Introduction
26. ~Saa & Saa 24, 25, Conjunction Introduction
27. Saa -> (~Saa & Saa) 24-26, Conditional Proof/Introduction
28. ~Saa & Saa 17, 23, 27, Constructive Dilemma
29. ∃x(Bx & ~Cx) 2-28, Reductio/Negation Elimination
Let me know if you'd like a session with me! I'd be happy to help you with first-order logic
Hien B.
Hi there Romesh! It's really difficult to do an entire walkthrough of a proof like this in written form, but I'd be happy to meet you for a session if you'd like an in-depth explanation. I can also help with similar proofs or anything else in logic. Please contact me if you're interested!05/21/20