
Patrick B. answered 03/04/20
Math and computer tutor/teacher
y = C(x-4)^2 - 4 <--- given the vertex is (4,-4)
4 = C(2-4)^2 - 4
4 = c(-2)^2 - 4
4 = 4c - 4
8 = 4c
c = 2
y = 2(x-4)^2 - 4
= 2(x^2 - 8x + 16) - 4
= 2x^2 - 16x + 32 - 4
= 2x^2 - 16x + 28
Another way to think of it is that (6,4) is also on the parabola
y = Ax^2 + Bx+C
(4,-4) ---> -4 = 16A + 4b + C
(6,4) ---> 4 = 36A + 6B + C
(2,4) ---> 4 = 4A + 2B + C
solves 3 x 3.....
subtracts Eq2 - Eq1: 8 = 20a + 2b
4 = 10a + b
subtracts eq2 - eq3: 0=32a + 4b
0 = 8a + b
b = -8a
4 = 10a + -8a
4 = 2a
a = 2
b=-16
4 = 4A + 2B + C
4 = 4(2) + 2(-16) + c
4 = 8 - 32 + c
4 = -24 + c
c = 28
y = 2x^2-16x + 28 which agrees with the previous answer..