width = 4.95445 ft
For the rectangular wall of the barn with an area of 84 ft2
Area = length x width
Area = 84
A = l x w
l = w + 12
A = w(w + 12)
84 = w2 + 12w
Subtract 84 from both sides of the equation to get the following quadratic
0 = w2 + 12w - 84
You can factor this with Quadratic Formula
(-b±sqrt(b2 - 4ac))/2a
For 0 = w2 + 12w - 84
a = 1
b = 12
c = -84
(-12±sqrt(122 - 4(-84)(1))))/2
(-12±sqrt(144 + 336))/2
(-12±sqrt(480))/2
(-12±(4sqrt(30)))/2
-12/2 + 4sqrt(30)2 = -6 + 2sqrt(30) = -6 + 10.95445 = 4.95445
Or
-12/2 - 4sqrt(30)/2 = -6 - 2sqrt(30) = -6 - 10.95445 = -16.95445 but width cannot be negative
So
w = 4.954445
L = w + 12 = 16.95445
Checking
A = l x w
84 = 4.95445 x 16.95445
84 = 84 (83.99997) rounded up
I hope you find this useful if you have any questions please send me a message.