
Andy C. answered 10/23/18
Math/Physics Tutor
6+i , 6-i and 7 are zeros
(x - 6 - i) (x - 6 + i) (x-7) =
[(x-6) - i ] [(x-6)+i] (x-7) =
[(x-6)^2 + 1](x-7) =
[x^2 - 12x + 36 + 1 ](x-7) =
[x^2 - 12x + 37](x-7) =
x^3 - 12x^2 + 37x
-7x^2 + 84x - 259
x^3 - 19x^2 + 121x - 259 =P(x) is the polynomial function with zeros 7, 6+i, 6-i
check:
7 | 1 -19 121 -259
7 -84 259
_____________________
1 -12 37 0
Yes, 7 is a solution and it factors out
THe remaining quadratic is
x^2 - 12 + 37 = 0
quadratic formula says:
[12 +or- sqrt ( 144 - 4(1)(37))] / 2
[12 _or - sqrt( -4)]/2
[12 +or- 2i ]/ 2
6 +or- i