There is a property of covariance called bilinearity which is that the covariance of a linear combination.
In general, for constants a,b,c,d and random variables W,X,Y,Z:
Cov(aX+bY, cW+dZ) = acCov(X,W) + adCov(X,Z) + bcCov(Y,W)+ bdCov(Y,Z)
Use the above formula to find Cov(4X,4X+2Y).
Note a=4, b=0, c=4, d=2, W=X, Z=Y
Cov(4X,4X+2Y)= 4*4Cov(X,X) + 4*2Cov(X,Y) + 0*2Cov(Y,X)+ 0*2Cov(Y,Y)
= 16*Var(X) + 8*Cov(X,Y)
Then use the given numbers to calculate it.