∫[secx + tanx]dx = ∫secxdx + ∫tanxdx
= ∫[secx (secx+tanx)/(secx+tanx)]dx + ∫[sinx/cosx]dx
= ∫[(sec2x +secxtanx) / (secx + tanx)]dx + ∫[sinx/cosx]dx
Let u = secx + tanx Then du = (secxtanx + sec2x)dx
Let w = cosx Then dw = -sinxdx So, sinxdx = -dw
= ∫[du/u] - ∫dw/w
= ln lul - ln lwl + C = ln l u/w l + C
= ln l (secx + tanx) / cosx l + C
= ln l sec2x + tanxsecx l + C