
Andy C. answered 11/03/17
Tutor
4.9
(27)
Math/Physics Tutor
1st Order Bernoulli : y' - P(x)* y = Q(X)*Y^N
y' - (1/x)*y = 1* y^2
1st order Bernoulli with p(x) = 1/x , q(x) = 1, AND n=2
Divides by y^2
y'/y^2 - (1/x)(1/y) = 1
y'/y^2 - 1/(xy) = 1
Let U = 1/y. Then dU = - dy/y^2 --> -dU = dy/y^2
-dU - (1/x)U = 1 <---- substitution
du + (1/x)U = -1
This is a first order linear ODE with P(x) = 1/x and Q(x) = -1
Integrating factor : exp ( integral (1/x)) = exp ( ln (x)) = x
x*dU + (1/x)(x) U = -x
x * dU + U = -x
d/dx [ x* U ] = -x
Integraing...
x*U = (-1/2)X^2 + c
U = (1/2)X + c/x = [ (1/2)x^ + c ]/x
1/y = [ (1/2)x^2 + c ]/x
y = x/ [ (1/2)x^2 + c]
-----------------------------------------
Check by differentiation using the quotient rule:
y' = {[(-1/2)x^2 + c] - x [- x ] }/ [ (1/2)x^2 + c]^2
= [(-1/2)x^2 +c + x^2] / [(-1/2)x^2 + c]^2
= [(1/2)x^2 + c]/[(-1/2)x^2 + c]^2
-------------------------------------------------------
y' - (1/x)y =
[(1/2)x^2 + c]/[(-1/2)x^2 + c]^2 - 1 / [(-1/2)x^2 + c] =
{[(1/2)x^2 + c] - [(-1/2)x^2 + c] }/[(-1/2)x^2 + c]^2
= X^2 / [ (-1/2)X^2 + C]^2
= Y^2