SOLVE THE NONLINEAR SYSTEM OF EQUATIONS FOR REAL SOLUTION

^{{}x

^{2 + 2 }y

^{2}= 2

x - y = 2

a) The solution is ??????

b) there is no solution

SOLVE THE NONLINEAR SYSTEM OF EQUATIONS FOR REAL SOLUTION

x - y = 2

a) The solution is ??????

b) there is no solution

Tutors, please sign in to answer this question.

Houston, TX

Hi, Mario!

Is the system supposed to be the following?

x^{2} + 2y^{2} = 2

x - y = 2

If so, graphing the system shows an ellipse with a line outside of it; they do not intersect, therefore no solution.

To solve it algebraically, solve the linear equation for either variable: x = y + 2

Substitute y+2 into the first equation:

(y + 2)^{2} + 2y^{2} = 2

y^{2} + 4y + 4 + 2y^{2} = 2

3y^{2} + 4y + 2 = 0

Using the quadratic formula results in a negative number under the square root sign; therefore, there is no real number solution.

Hope this helps!

Kathye P.

Ansonia, CT

No solution as written; the first is an ellipse, the second a line, and they don't intersect.

Using substitution you can generate 3y^{2} + 4y + 2 = 0, which has no real roots. There are imaginary (complex, actually) roots where

y = (1/3)(-2 ± i√2)

Jeffrey G.

Former Med-Student turned Professional Science Tutor

Brooklyn, NY

5.0
(350 ratings)

Avital S.

Patient tutor, for all ages, helps when your learning is blocked

Westwood, NJ

5.0
(504 ratings)

Larry G.

Algebra/Geometry/SAT Tutor

Bronx, NY

4.9
(141 ratings)

- Math Help 4189
- Math 7243
- Math Word Problem 3075
- Finite Mathematics 509
- Math Problem 795
- Probability 1114
- Probability & Statistics 574
- Math Question 669
- Math Equations 892
- Algebra Help 889