
Dr. Joe M. answered 03/28/17
Tutor
5
(75)
College Prof and High School experience
Prove d[cos(x)]/dx = -tan(x) using the identity cos(x) = sin(x)/tan(x).
Start with the Quotient Rule: [u/v]′= {v u′ - u v′} / v2
d/dx(cosx) = d/dx( sin(x) / tan(x) ) = { tan(x) [sin(x)]′ - sin(x) [tan(x)]′ } / tan2(x)
= { tan(x) cos(x) - sin(x) sec2(x) } / tan2(x) =
= { cos(x) sin(x) / cos(x) - sin(x) sec2(x) } / tan2(x) ## Simplify tan(x) cos(x) = sin(x)
= { sin(x) - sin(x) sec2(x) } / tan2(x) ## use the Pythagorean identity below
= { sin(x) [1 - sec2(x)] } / tan2(x) ## Factor out sin(x)
= { sin(x) [- tan2(x)] } / tan2(x) ## note: 1 - sec2(x) = - tan2(x) since 1 + tan2(x) = sec2(x)
= - sin(x) done!!