3k

^{3}=27k3k^{3}=27k

Tutors, please sign in to answer this question.

Rome, NY

Hi, Lila!

Vivian and Ken are correct in that two of the roots are +/-3. However, you need to be careful "canceling" out a k on both sides, as this removes one of the possible roots. This type of problem is traditionally solved using factoring:

3k^{3 }= 27k

Rearrange the equation so that it equals zero, just as you would do with a quadratic equation.

3k^{3 }- 27k = 0

Factor out the LCM: 3k

3k(k^{2 }- 9) = 0

Factor the quadratic expression in the parenthesis.

3k(k+3)(k-3) = 0

Set each part equal to 0 and solve for k.

3k = 0 --> k = 0 (this is the root that is removed when you "cancel" out a k early on)

k + 3 = 0 --> k = -3

k - 3 = 0 --> k = 3

This method gives you all 3 roots: k = -3, 0, and 3.

Patty

Pittsfield, MA

Divide both sides by K leaving

3k2=27

Divide both sides by 3...

(3k2)/3=27/3

(3k2)/3=27/3

Resulting in

k2=9

k2=9

Square-root both sides...

k=+/-3

k=+/-3

Middletown, CT

Hi Lila;

3k^{3}=27k

First, you have k^{3} on the left side, and k^{1} on the right side. k^{1} cancels on both sides...

3k^{2}=27

Divide both sides by 3...

(3k^{2})/3=27/3

k^{2}=9

Square-root both sides...

k=+/-3

Kevin T.

A Laid Back Tutor who Specializes in Math, Science, and Test Prep

Caldwell, NJ

4.8
(49 ratings)

Robert E.

Experienced Physics and Math Tutor

Jamaica, NY

4.9
(495 ratings)

Steven M.

Premium Test Prep and Subject Tutor - New York City UWS

New York, NY

5.0
(253 ratings)

- Algebra 1 3862
- Math 9039
- Algebra 4749
- Math Help 5031
- Precalculus 1448
- Algebra Word Problem 2366
- Word Problem 4851
- Algebra Help 946
- Algebra 2 Question 483
- Geometry 1766

## Comments