Tom K. answered 10/23/16
Tutor
4.9
(95)
Knowledgeable and Friendly Math and Statistics Tutor
Recall that cos(2a) = cos^2(a) - sin^2(a) = 2 cos^2(a) - 1
2 cos^2(a) - 1 = cos(2a)
2 cos^2(a) = 1 + cos(2a)
cos^2(a) = 1/2 + 1/2 cos(2a)
Thus, f(x) = cos^2(2x) = 1/2 + 1/2 cos(4x)
This function is increasing when f'(x) > 0
f'(x) = -2 sin(4x)
-2 sin(4x) > 0 on (0, 2 pi) iff sin(4x) < 0 on (0, 2 pi)
sin(x) is negative on (pi, 2 pi), (3 pi, 4 pi), (5 pi, 6 pi), (7 pi, 8 pi), so
sin(4x) is negative on (pi/4, pi/2), (3 pi/4, pi), (5 pi/4, 3 pi/2), (7 pi/4, 2 pi)