
Kenneth S. answered 06/11/16
Tutor
4.8
(62)
Expert Help in Algebra/Trig/(Pre)calculus to Guarantee Success in 2018
P(7) = 6/36, P(11) = 2/36.
On first roll, you could win right away by rolling 7. If Not 7, P(not 11) is 28/36, so P(being able to continue is 28/36 = 7/9.
So probability of winnng on second roll, P(7 2nd) = (7/9)(6/36); and if that's not a W (rolled 7) or L (rolled 11),
this next probability is (7/9)2(6/36), etc.
This constitutes an infinite geometric series with a = 6/36, r = 14/18; using the formla S = a/(1-r), we get the sum of all these ways to win as (6/36) ÷ [1-(7/9)] = (1/6)(9/2) = 3/4. REVISED.