Let's rewrite the problem first
(1 + ax + bx2)4 = (1+x(a+bx))4
= 1 + (4C1)[x(a+bx)] + (4C2)[x(a+bx)]2 + (4C3)[x(a+bx)]3 + (4C4)[x(a+bx)]4
= 1 + 4[x(a+bx)] + 6[x(a+bx)]2 + 4[x(a+bx)]3 +[x(a+bx)]4
= 1 + 4ax + 4bx2 + 6a2x2 + 12abx3 + 6b2x4 + 4(ax + bx2)3 + (ax + bx2)4
Now the only x term is the 4ax
4ax = 8x
and a = 2
The x2 terms are 4bx2 + 6a2x2
4bx2 + 6a2x2 = 32x2
Substitute the value for a determined above
4bx2 + 24x2 = 32x2
4bx2 = 8x2
and b=2
Let's see if this works
(1+2x+2x2)4
(1+2x+2x2+2x+4x2+4x3+2x2+4x3+4x4)2
(1+4x+8x2+8x3+4x4)2
1+4x+8x2+8x3+4x4+4x+16x2+32x3+32x4+16x5+8x2+32x3+64x4+64x5+32x6+8x3+.....
1+8x+32x2+...
Daniel K.
In the expansion of (2+x)^14 multiplied by (1+2/x)^14, find the coefficient of x^12.
Report
01/11/16
Daniel K.
01/11/16