Eric C. answered 12/04/15
Tutor
5.0
(180)
Engineer, Surfer Dude, Football Player, USC Alum, Math Aficionado
a)
S = 4pi*r^2 + 2pi*r*h
1000 = 4pi*r^2 + 2pi*r*h
1000 - 4pi*r^2 = 2pi*r*h
h = (1000 - 4pi*r^2)/(2pi*r)
b)
V = 2/3*pi*r^3 + pi*r^2*h
h = (1000 - 4pi*r^2)/(2pi*r)
V = 2/3*pi*r^3 + pi*r^2*(1000 - 4pi*r^2)/(2pi*r)
V = 2/3*pi*r^3 + 1/2*r*(1000 - 4pi*r^2)
V = 2/3*pi*r^3 + 500*r -2*pi*r^3
V = -4/3*pi*r^3 + 500*r
c)
In order to find the maximum volume, we need to find dV/dr and set it equal to 0.
V' = -4*pi*r^2 + 500 = 0
r^2 = 125/pi
r = 5*√(5)/√(pi), -5*√(5)/√(pi)
Since we can't have a radius of negative length, we can disregard the second solution.
Your optimal radius will be 5*√(5)/√(pi)
Since the question asked for the optimal volume, not the optimal radius, we need to plug your optimal r into your volume equation.
V = -4/3*pi*r^3 + 500*r
V = -4/3*pi*(125/pi)*5*√(5)/√(pi) + 500*5*√(5)/√(pi)
After some cancelation/ combining of terms:
V = -2500/3*√(5)/√(pi) + 2500*√(5)/√(pi)
V = 5000/3*√(5)/√(pi) cubic feet.
This is the maximum volume you can achieve with the allotted surface area.