First integrate sin-1 x
This can be done by integration by parts
u = sin-1 x, du = dx/√(1 - x2), dv = dx, v = x
∫ sin-1 x dx = x sin-1 x - ∫ [x/√(1-x2)] dx
Do a u-substitution: u = 1 - x2, du = -2x dx
∫ sin-1 x dx = x sin-1 x + (1/2) ∫ u-1/2 du
= x sin-1 x + √u + C = x sin-1 x + √(1 - x2) + C
Now for your integral: ∫ ln x sin-1 x dx
Integrate by parts: u = ln x, du = dx, dv = sin-1 x, v = x sin-1 x + √(1 - x2)
∫ ln x sin-1 x dx = [x sin-1 x + √(1 - x2)]ln x - ∫ [x sin-1 x + √(1 - x2)]/x dx
= [x sin-1 x + √(1 - x2)]ln x - ∫ sin-1 x dx - ∫ √(1 - x2) / x dx
= [x sin-1 x + √(1 - x2)](ln x - 1) - ∫ √(1 - x2) / x dx
Do a trig-substitution on the rightmost integral: x = sin θ, dx = cos θ dθ
= [x sin-1 x + √(1 - x2)](ln x - 1) - ∫ [√(1 - sin2 θ) / sin θ] cos θ dθ
= [x sin-1 x + √(1 - x2)](ln x - 1) - ∫ [(1 - sin2 θ) / sin θ] dθ
= [x sin-1 x + √(1 - x2)](ln x - 1) + ∫ sin θ dθ - ∫ csc θ dθ
= [x sin-1 x + √(1 - x2)](ln x - 1) - cos θ - ∫ csc θ dθ
= [x sin-1 x + √(1 - x2)](ln x - 1) - √(1 - x2) + ∫ -(csc2 θ + csc θ cot θ)/(csc θ + cot θ) dθ
Do a u-substitution: u = csc θ + cot θ, du = -(csc2 θ + csc θ cot θ) dθ
= [x sin-1 x + √(1 - x2)](ln x - 1) - √(1 - x2) + ∫ 1/u du
= [x sin-1 x + √(1 - x2)](ln x - 1) - √(1 - x2) + ln |u| + C
= [x sin-1 x + √(1 - x2)](ln x - 1) - √(1 - x2) + ln |csc θ + cot θ| + C
= [x sin-1 x + √(1 - x2)](ln x - 1) - √(1 - x2) + ln |[1 + √(1 - x2)]/x| + C
= (ln x - 1) x sin-1 x + (ln x - 2)√(1 - x2) + ln [1 + √(1 - x2)] - ln |x| + C
Michael W.
05/07/15