dy/dx = 2 - y
(1/(2-y))dy = dx
∫(1 / (2-y))dy = ∫dx
-ln l2-yl = x + K
ln l 2-y l = -x - K
l 2 - y l = e-x- K = e-Ke-x
2 - y = ±e-Ke-x = Ce-x
y = 2 - Ce-x
When x = 0, y = 1. So, 1 = 2 - C. C = 1
Therefore, y = 2 - e-x
------------------------------------
dy/dx = y(2 - y)
1 / [y(2-y)] dy = dx
Integrate by Partial Fractions to get (1/2)lnlyl - (1/2)lnl2-yl = x + K
ln l y / (2-y )l = 2x + 2K
l y / (2-y) l = e2x+2K = e2Ke2x
y / (2-y) = ±e2ke2x = Ce2x
When x = 0, y = 1. So, C = 1.
y / (2 - y) = e2x
y = 2e2x - ye2x
y + ye2x = 2e2x
y(1 + e2x) = 2e2x
So, y = 2e2x / (1 + e2x)