Joe P. answered 05/15/24
Mathematical Physics Researcher with 20 Years of Tutoring Experience
A another way is using the determinant (D = a^2 - 4b) of the characteristic polynomial, r^2 + ar + b.
a) D = 4+40 > 0 so solution is not of sinusoidal form.
b) D = 100 - 4 > 0 so solution is not of sinusoidal form.
c) D = 1/4 - 20 < 0 so solution is of sinusoidal form.
d) D = 4 - 100 < 0 so solution is of sinusoidal form.
So, a) and b) cannot be satisfied by the function.
Now we use elimination of arbitrary constants.
y = e^t (c1 sin(3 t) + c2 cos(3 t))
y' = e^t ((c1 - 3 c2) sin(3 t) + (3 c1 + c2) cos(3 t))
y'' = 2 e^t ((3 c1 - 4 c2) cos(3 t) - (4 c1 + 3 c2) sin(3 t))
We can recollect in terms of c1 and c2, but I think the following will be easier.
By Euler's formula,
y = c1 e^((1 - 3 i) t) + c2 e^((1 + 3 i) t).
y' = (1 - 3 i) c1 e^((1 - 3 i) t) + (1 + 3 i) c2 e^((1 + 3 i) t).
y'' = (-8 - 6 i) c1 e^((1 - 3 i) t) - (8 - 6 i) c2 e^((1 + 3 i) t).
Then subtracting multiples of equations to eliminate c1, we get:
y' - (1 - 3 i) y = 6 i c2 e^((1 + 3 i) t).
y'' - (-8 - 6 i) y = 12 i c2 e^((1 + 3 i) t)
Now we subtract multiples of these equations to eliminate c2:
y'' - (-8 - 6 i) y - 2 (y' - (1 - 3 i) y) = 0
Simplifying:
y'' - 2 y' + 10 y = 0
This is choice d).