Let T(t) = temperature reading on the thermometer at time t minutes after leaving the room
By Newton's Law of Cooling, dT/dt = k(T - 20)
dT / (T - 20) = kdt
∫[dT / (T - 20) = ∫kdt
ln l T - 20 l = kt + C
T - 20 = ±ekt+C
T - 20 = ±eCekt = Aekt, where A = ±eC
So, T = Aekt + 20
T(0) = 70, so A + 20 = 70. Therefore, A = 50.
T(t) = 50ekt + 20
Since T(0.5) = 50, we have 50e0.5k + 20 = 50;
e0.5k = 0.6
0.5k = ln(0.6) So, k = -1.02165.
T(t) = 50e-1.02165t + 20
T(1) = 50e-1.02165 + 20 = 38.00°
----------------------------------
T(t) = 50e-1.02165t + 20 = 25
Solve for t.