For x = vy, obtain y = x/v.
Also, dx/dy or d(vy)/dy = v(dy/dy) + (dv/dy)y
or v + y(dv/dy) which gives dx as vdy + ydv.
Then xdx + (y − 2x)dy = 0 in terms of v & y only
is written as vy(vdy + ydv) + (y − 2vy)dy = 0.
Further development gives v2ydy + vy2dv +ydy − 2vydy = 0
and then v2dy + vydv +dy − 2vdy = 0.
Rewrite this last as v2dy − 2vdy +dy + vydv = 0
or (v2 − 2v + 1)dy = -vydv.
Separation of variables gives dy/y = -v dv/(v − 1)2.
*******************************************************************************
The equation above can be taken further to
dy/y = -[1/(v − 1) + 1/(v − 1)2]dv which integrates to
ln |y| = -ln |v − 1| + (v − 1)-1 + C.
For v equal to x/y, establish ln |y| = -ln |(x − y)/y| + ((x − y)/y)-1 + C,
which goes to ln |x − y| = y/(x − y) + C.