
Yefim S. answered 03/30/22
Math Tutor with Experience
y' = u; u' = y'' and u'' = y''', and we get second order equation: u'' + u = secx (1);.
Characteristic equation: r2 + 1 = 0; r = ±i; u1 = cosx; u2 = sinx. General solution of Homogenius ODE:
ug = C1cosx + C2sinx.
Wronskian W = det{(cosx sinx) (- sinx cosx)] = cos2x + sin2x = 1.
By variation of parameters method particular solution of ODE (1):
up = - u1∫u2secx/Wdx + u2∫u1secx/Wdx = - cosx∫sinx/cosxdx + sinx∫dx = cosxlnIcosxI + xsinx.
So, u = y' = C1cosx + C2sinx + cosxlnIcosxI + xsinx; y = ∫(C1cosx + C2sinx + cosxlnIcosxI + xsinx)dx =
C1sinx - C2cosx + sinxlnIcosxI + lnItanx + secxI - xcosx + C3