
Yefim S. answered 03/19/22
Math Tutor with Experience
Let y = vx, where v is v(x). Then y' v'x + v.
v'x + v = (x2 - v2x2)/(vx2); v'x = (1 - v2/v - v; v'x = (1 - 2v2)/v; ∫vdv/(1 - 2v2) = ∫dx/x; - 1/4lnI1 - 2v2I = lnIxI - 1/4lnC; lnI1 - 2v2I = - 4lnIxI + lnC; I2v2 - 1I = Cx-4. v = y/x; I2y2/x2 - 1I = Cx-4; I2·4/2 - 1I = C·2-4; C = 48;
I2y2/x2 - 1I = 48x-4