Yefim S. answered 12/20/21
Math Tutor with Experience
(a) We have fundamental solution: y1 = x, y2 = xe3x.
Wronskian W(x) = det[(x xe3x) (1 e3x+ 3xe3x)] = 3x2e3x.
By variation of parameters:
y = -x∫xe3x·4xe3x/(3x2e3x)dx + xe3x∫x·4xe3x/(3x2e3x)dx = - 4/3x∫e3xdx + 4/3xe3x∫dx =
-4/9xe3x + 4/3x2e3x= 4/9(3x2 - x)e3x