
Yefim S. answered 11/08/21
Math Tutor with Experience
a) h)x,y) = x2 - 6xλ + 9λ2 + y2 - 2yλ + λ2 + 18λ - 10λ2 = (x - 3λ)2 + (y - λ)2 + 18λ - 10λ2
From here min h(x, y) = m(λ) = 18λ - 10λ2 when x = 3λ and y = λ
(b) m'(λ) = 18 - 20λ = 0, λ = 0.9
m''(λ) = - 20 < 0. So, m(λ) has maximum at λ = 0.9; max m(λ) = m(0.9) = 18·0.9 - 10·0.92 = 8.1
c) ∂h/∂x = 2x - 6λ = 0; ∂h/∂y = 2y - 2λ = 0; ∂h/∂λ = - 6x - 2y + 18 = 0
x = 3λ, y = λ; - 18λ - 2λ + 18 = 0; λ = 0.9; x = 2.7, y = 0.9
At point (2.7, 0.9) function has minimum under constrain 6x + 2y - 18 = 0;
f(2.7, 0.9) = 2.72 + 0.92 = 8.1
If take other point from constrain for example (3, 0) then f(3, 0) = 32 + 02 = 9 > 8.1 = f(2.7, 0.9)