
Spencer G. answered 10/13/21
Mechanical Engineering Graduate Student
Below is the solution to the problem asked. If you need to find the A,B,C coefficients, simply plug the particular solutions into the governing equation and solve.
y'' + 4y' + 4y = 12te^(-2t) - 8t - 12
y(t) = y_p + y_h
Starting with the particular solution: y_p
G(t) = 12te^(-2t) - 8t - 12
Let: y_p(t) = A t^3 e^(-2t) + Bt + C
First derivative using chain rule:
y'_p(t) = [3A t^2 e^(-2t) - 2A t^3 e^(-2t)] + B
Second derivative using chain rule:
y''_p(t) = [6A t e^(-2t) - 6A t^2 e^(-2t)] + [-6A t^2 e^(-2t) + 4A t^3 e^(-2t)]
Solution to first part:
y = A t^3 e^(-2t) + Bt + C
y' = -2A t^3 e^(-2t) + 3A t^2 e^(-2t) + B
y'' = 4A t^3 e^(-2t) - 12A t^2 e^(-2t) + 6A t e^(-2t)
General Solution:
y'' + 4y' + 4y = 0
r^2 + 4r + 4 = 0
(r + 2)^2 = 0
r = -2,-2
y_h = C_1 e^(-2t) + C_2 t e^(-2t)
Solving for coefficients:
y_h = C_1 e^(-2t) + C_2 t e^(-2t)
y'_h = -2 C_1 e^(-2t) + C_2 e^(-2t) - 2 C_2 t e^(-2t)
-2 = C_1 e^(0) + 0
C_1 = -2
1 = -2(-2) e^(0) + C_2 e^(0) + 0
C_2 = -3
General Solution:
y_h = -2 e^(-2t) - 3 t e^(-2t)

Adam B.
10/17/21