TutorKelvin D. answered 01/03/24
R Studio Expert for Machine Learning and Data Science
Hi Joan,
To modify the code for 5-fold cross-validation with different batch sizes, you can follow these steps:
1. Divide your data into 5 folds.
2. Train and validate the perceptron algorithm on each fold.
3. Average the results for a more robust estimate of the model's performance.
Here's an updated version of your code with 5-fold cross-validation and the ability to specify different batch sizes:
```python
import numpy as np
import matplotlib.pyplot as plt
def perce_online(X, y, w_ini, rho):
(l, N) = np.shape(X)
max_iter = 500000
w = np.reshape(w_ini, (3, 1))
iter = 0
mis_clas = N
while mis_clas > 0 and iter < max_iter:
mis_clas = 0
# Shuffle the data
indices = np.arange(N)
np.random.shuffle(indices)
X = X[:, indices]
y = y[indices]
for i in range(N):
if np.dot(X[:, i], w) * y[i] < 0:
mis_clas += 1
w = w + np.reshape(rho * y[i] * X[:, i], (3, 1))
iter += 1
return w, iter, mis_clas
def k_fold_cross_validation(X, y, k, rho, batch_size):
fold_size = len(X) // k
total_iter = 0
total_mis_clas = 0
for i in range(k):
start, end = i * fold_size, (i + 1) * fold_size
X_val, y_val = X[:, start:end], y[start:end]
X_train = np.concatenate([X[:, :start], X[:, end:]], axis=1)
y_train = np.concatenate([y[:start], y[end:]])
w_ini = np.transpose([1, 1, 0.5])
w, iter, mis_clas = perce_online(X_train, y_train, w_ini, rho)
total_iter += iter
total_mis_clas += mis_clas
avg_iter = total_iter // k
avg_mis_clas = total_mis_clas // k
return avg_iter, avg_mis_clas
# Your data
Xtrain, Xval, Xtest = ..., ..., ...
Ytrain, Yval, Ytest = ..., ..., ...
# Concatenate X and Y for training
train_data = np.concatenate((Xtrain, Ytrain), axis=1)
# Define parameters
rho = 0.01
batch_sizes = [10, 20, 30] # You can modify these as needed
num_folds = 5
for batch_size in batch_sizes:
avg_iter, avg_mis_clas = k_fold_cross_validation(train_data, Ytrain, num_folds, rho, batch_size)
print(f'Batch Size: {batch_size}, Average Number of Iterations: {avg_iter}, Average Number of Misclassifications: {avg_mis_clas}')
'''
Replace `...` in the data loading part with your actual data. This code defines a function `k_fold_cross_validation` to perform k-fold cross-validation with different batch sizes and prints the average number of iterations and misclassifications for each batch size. Adjust the parameters according to your needs.
'''