ÿ + ý - 6y = 12 e-t y = f(t), f(0) = 1, f '(0) = -2
Take Laplace Transform of each.
s2F(s) - sf(0) - f '(0) + sF(s) - f(0) - 6F(s) = 12/(s + 1)
Substitute f(0) = 1, f '(0) = -2
s2F(s) - s + 2 + sF(s) - 1 - 6F(s) = 12/(s + 1)
Gather all the F(s) to the left side; carry all other terms to the right side.
(s2 + s - 6) F(s) = 12/(s + 1) + s - 1
Isolate F(s).
F(s) = 12/(s+1)(s+3)(s-2) + (s - 1)/(s+3)(s-2)
Change to partial fractions.
12/(s+1)(s+3)(s-2) = -2/(s+1) + 1.2/(s+3) + 1.5/(s - 2)
(s-1)/(s+3)(s - 2) = 0.25/(s-2) + 0.8/(s+3)
Substitute and combine the terms for F(s).
F(s) = -2/(s+1) + 2/ (s+3) + 1.75/(s-2)
Take the inverse Laplace Transform.
f(t) = -2e-t + 2e -3t + 1.75 e -2t