
Yefim S. answered 07/15/21
Math Tutor with Experience
x = u + x0; y = v + y0;
9x0 - 4y0 = - 4; x0 = 0
-2x0 + y0 = 1; y0 = 1;
x = u, y = v + 1
dx = du, dy = dv
(9u - 4v)du - (2u - v)dv = 0;
du/dv = (2u - v)/(9u - 4v) = 0; (1)
u = vs, where s is new function of v.
du/dv = s + vds/dv. We substitute in (1): s + vds/dv = (2vs - v)/(9vs - 4v);
vds/dv = (2s - 1)/9s - 4) - s; vds/dv = (2s - 1 - 9s2 + 4s)/(9s - 4); dv/v = - (9s - 4)/(3s - 1)2ds;∫
∫dv/v = ∫(1/(3s - 1)2 - 3/(3s - 1))ds; lnIvI = - 1/[3(3s - 1)] - lnI3s - 1I + C.
Then back to x and y, s = u/v = x/(y - 1), v = y - 1, u = x

Adam B.
07/15/21