Yefim S. answered 05/20/21
Math Tutor with Experience
I = ∫(x4 + X2 + 4)/(x6 +4x4 + 4x2∫)dx = ∫(x4 + x2+ 4)/[x2(x2 + 2)2]dx
You have to decompouse this rational function: (x4 + x2+ 4)/[x2(x2 + 2)2] = a/x2 + b/x + (cx + d)/(x2 + 2)2 +
(ex + f)/(x2 + 2); x4 + x2+ 4 = a(x2 + 2)2 + bx(x2 + 2)2 + (cx + d)·x2 + (ex + f)x2(x2 + 2)
b + e = 0, e = 0
a + f = 1, f = 0
4b + c = 0, c = 0
4a + d + 2f = 1, d = - 3
4b = 0, b = 0
4a = 4, a = 1
I = ∫(1/x2 - 3/(x2 + 2)2)dx = - 1/x - 3∫dx/(x2 + 2)2. In last integral let x = √2tanu; dx = √2sec2udu
-3∫dx/(x2 + 2)2 = -3∫√2sec2udu/4sec4u = - 3√2/4∫cos2udu = -3√2/8(u + 1/2sin2u) = - 3√2/8(tan-1x/√2 + x√2/(x2 + 2). So our integral I = -1/x -3√2/8(tan-1x/√2 + x√2/(x2+ 2)) + C