
Yefim S. answered 05/04/21
Math Tutor with Experience
Let f(x) is integrated factor; then f(x)(2x2 + y)dx + f(x)(x2y - x)dy = 0;
and ∂/∂y[f(x)(2x2+ y)] = ∂/∂x[f(x)(x2y - x)]; f(x) = f'(x)(x2y - x) +f(x)(2xy - 1); 0 = f'(x)x(xy - 1) + 2f(x)(xy - 1).
From here f'(x)x + 2f(x) = 0. f'(x)/f(x) = - 2/x; ∫d(f(x))/f(x)) = -∫2dx/x; ln(f(x)) = -2lnx; f(x) = x - 2 = 1/x·2.
We get exact equation: (2 + y/x2)dx + (y - 1/x)dy = 0.
Looking for solution F(x,y); ∂F/∂x = 2 + y/x2; F = ∫(2 + y/x2)dx = 2x - y/x + φ(y)
∂F/∂y = - 1/x + φ'(y) = y - 1/x; φ'(y) = y; φ(y) = ∫ydy = y2/2 + C
So, F(x,y) = 2x - y/x + y2/2 + C