
William W. answered 03/16/21
Top Pre-Calc Tutor
If u = ex then du/dx = ex so dx = du/ex = du/u
So the substitution becomes:
∫-u/(u + 1/u)(du/u)
-∫1/(u + 1/u) du
-∫1/(u2/u + 1/u) du
-∫1/((u2 + 1)/u) du
-∫u/(u2 + 1) du
Let w = u2 + 1
So dw/du = 2u or du = dw/(2u)
So the integral becomes:
-∫u/(w•(2u)) dw
-1/2∫1/w dw
-1/2ln(w) + C
-1/2ln(u2 + 1) + C
-1/2ln(e2x + 1) + C